J ul 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
نویسندگان
چکیده
We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explicit formula for: the steady state probability of each state in the partially asymmetric exclusion process (PASEP); the polynomial enumerating permutations with a fixed set of weak excedances according to crossings; the polynomial enumerating permutations with a fixed set of descent bottoms according to occurrences of the generalized pattern 2− 31.
منابع مشابه
A pr 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...
متن کاملCombinatorial Hopf Algebras, Noncommutative Hall-littlewood Functions, and Permutation Tableaux
We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...
متن کاملar X iv : 0 80 4 . 09 95 v 3 [ m at h . C O ] 3 J un 2 00 9 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...
متن کاملResearch Statement: Specializations of Macdonald polynomials
Symmetric functions are vital to the study of combinatorics because they provide valuable information about partitions and permutations, topics which constitute the core of the subject. The significance of symmetric function theory is manifest by its connections to other branches of mathematics, including group theory, representation theory, Lie algebras, and algebraic geometry. One important b...
متن کامل0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra
We define an action of the 0-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their (q, t)-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identi...
متن کامل